April 20, 2011

Brains that switch between active areas more often learn faster




(April 20, 2011)  The “flexibility” of a person’s brain — how much different areas of the brain link up in different combinations — can be used to predict how fast someone will learn, according to research by an international team from Oxford University, UC Santa Barbara, and UNC Chapel Hill.

The team ran an experiment over 3 sessions in which 18 volunteers had to push a series of buttons as fast as possible. They then divided functional MRI images of each volunteer’s brain into 112 different regions and analyzed how these different areas were active together while they performed the task.

They found that people with more “flexible” brains, whose brain regions switched active areas more often, were faster at learning the motor tasks.

“It’s the first time that anyone has defined this concept of ‘flexibility’ in the brain: how brain regions ‘light up’ together in different combinations. We’ve been able to show that how much these areas ‘swap partners’ in one session can predict how fast people will perform a task in a later session,” said Dr Mason Porter of Oxford University’s Mathematical Institute, an author of the report. “It suggests that in order to learn, the networks of our brains have to be flexible.”


joufrnal reference (OPEN ACCESS) >>

April 11, 2011

UCSF Study on Multitasking Reveals Switching Glitch in Aging Brain




(April 11, 2011)  Scientists at the University of California, San Francisco (UCSF) have pinpointed a reason older adults have a harder time multitasking than younger adults: they have more difficulty switching between tasks at the level of brain networks.

Researchers know that multitasking negatively affects short-term, or “working,” memory in both young and older adults. Working memory is the capacity to hold and manipulate information in the mind for a period of time. It is the basis of all mental operations, from learning a friend’s telephone number, and then entering it into a smart phone, to following the train of a conversation, to conducting complex tasks such as reasoning, comprehension and learning.

However, anecdotal accounts of “senior moments” – such as forgetting what one wanted to retrieve from the refrigerator after leaving the couch – combined with scientific studies conducted at UCSF and elsewhere indicate that the impact is greater in older people.

The current study offers insights into what is occurring in the brain in older adults. “Our findings suggest that the negative impact of multitasking on working memory is not necessarily a memory problem, per se, but the result of an interaction between attention and memory,” said the senior author of the study, Adam Gazzaley, MD, PhD, UCSF associate professor of neurology, physiology and psychiatry and director of the UCSF Neuroscience Imaging Center.