June 25, 2015

Spintronics advance brings wafer-scale quantum devices closer to reality




(June 25, 2015)  An electronics technology that uses the “spin”—or magnetization—of atomic nuclei to store and process information promises huge gains in performance over today’s electron-based devices. But getting there is proving challenging.

Now, researchers at the University of Chicago’s Institute for Molecular Engineering have made a crucial step toward nuclear spintronic technologies. They have gotten nuclear spins to line themselves up in a consistent, controllable way, and they have done it using a high-performance material that is practical, convenient and inexpensive.

“Our results could lead to new technologies like ultra-sensitive magnetic resonance imaging, nuclear gyroscopes and even computers that harness quantum mechanical effects,” said Abram Falk, the lead author of the report on the research, which was featured as the cover article of the June 17 issue of Physical Review Letters. Falk and colleagues in David Awschalom’s IME research group invented a new technique that uses infrared light to align spins. They did so using silicon carbide, an industrially important semiconductor.


journal reference >>