August 28, 2015

New glass manufacturing technique could enable design of hybrid glasses and revolutionise gas storage

(August 28, 2015)  A new method of manufacturing glass could lead to the production of ‘designer glasses’ with applications in advanced photonics, whilst also facilitating industrial scale carbon capture and storage. An international team of researchers, writing today in the journal Nature Communications, report how they have managed to use a relatively new family of sponge-like porous materials to develop new hybrid glasses.

The work revolves around a family of compounds called metal-organic frameworks (MOFs), which are cage-like structures consisting of metal ions, linked by organic bonds. Their porous properties have led to proposed application in carbon capture, hydrogen storage and toxic gas separations, due to their ability to selectively adsorb and store pre-selected target molecules, much like a building a sieve which discriminates not only on size, but also chemical identity.

However, since their discovery a quarter of a century ago, their potential for large-scale industrial use has been limited due to difficulties in producing linings, thin films, fibrous or other 'shaped' structures from the powders produced by chemical synthesis. Such limitations arise from the relatively poor thermal and mechanical properties of MOFs compared to materials such as ceramics or metals, and have in the past resulted in structural collapse during post-processing techniques such as sintering or melt-casting.

read entire press  release >>

journal reference (Open Access) >>