November 2, 2015

Pineapple genome offers insight into photosynthesis in drought-tolerant plants

The pineapple genome offers new insights into the evolution of the
pineapple and of crop plants like sorghum and rice.
Photo by Robert Paull, University of Hawaii

(November 2, 2015)  By sequencing its genome, scientists are homing in on the genes and genetic pathways that allow the juicy pineapple plant to thrive in water-limited environments. The new findings, reported in the journal Nature Genetics, also open a new window on the complicated evolutionary history of grasses like sorghum and rice, which share a distant ancestor with pineapple.

Humans have cultivated pineapple for more than 6,000 years, beginning in present-day southwest Brazil and northeast Paraguay. Today, more than 85 countries produce about 25 million metric tons of pineapple fruit each year, with a gross production value approaching $9 billion.

Plant biology professor Ray Ming led an international team that
sequenced the pineapple genome.
Photo by L. Brian Stauffer

Like many plants, the ancestors of pineapple and grasses experienced multiple doublings of their genomes. Tracking the remnants of these "whole-genome duplications" in different plant species helps researchers trace their shared - and independent - evolutionary histories.

"Our analysis indicates that the pineapple genome has one fewer whole genome duplication than the grasses that share an ancestor with pineapple, making pineapple the best comparison group for the study of cereal crop genomes," said University of Illinois plant biology professor Ray Ming, who led the multi-institutional pineapple genome sequencing effort. The work uncovered evidence of two whole-genome duplications in the pineapple's history, and validated previous findings of three such duplications in grasses.

read entire press  release >>