January 12, 2016

Brain monitoring takes a leap out of the lab


Tim Mullen, left, and Mike Yu Chi are the lead researchers on the study. Both are UC San Diego
alumni. Mullen cofounded Qusp, a start up focused on analytics, and Chi cofounded Cognionics,
which developed the EEG headset featured in the study.

(January 12, 2016)  Bioengineers and cognitive scientists have developed the first portable, 64-channel wearable brain activity monitoring system that’s comparable to state-of-the-art equipment found in research laboratories.

The system is a better fit for real-world applications because it is equipped with dry EEG sensors that are easier to apply than wet sensors, while still providing high-density brain activity data. The system comprises a 64-channel dry-electrode wearable EEG headset and a sophisticated software suite for data interpretation and analysis. It has a wide range of applications, from research, to neuro-feedback, to clinical diagnostics.

The researchers’ goal is to get EEG out of the laboratory setting, where it is currently confined by wet EEG methods. In the future, scientists envision a world where neuroimaging systems work with mobile sensors and smart phones to track brain states throughout the day and augment the brain’s capabilities.


The headset features 64 channels for EEG monitoring.

“This is going to take neuroimaging to the next level by deploying on a much larger scale,” said Mike Yu Chi, a Jacobs School alumnus and CTO of Cognionics who led the team that developed the headset used in the study. “You will be able to work in subjects’ homes. You can put this on someone driving.”

The researchers from the Jacobs School of Engineering and Institute for Neural Computation at UC San Diego detailed their findings in an article of the Special Issue on Wearable Technologies published recently in IEEE Transactions on Biomedical Engineering.

Sensors designed to work on a subject’s hair are made of a mix of silver and carbon deposited
on a flexible substrate. This material allows sensors to remain flexible and durable while still
conducting high-quality signals—a silver/silver-chloride coating is key here.

They also envision a future when neuroimaging can be used to bring about new therapies for neurological disorders. “We will be able to prompt the brain to fix its own problems,” said Gert Cauwenberghs, a bioengineering professor at the Jacobs School and a principal investigator of the research supported in part by a five-year Emerging Frontiers of Research Innovation grant from the National Science Foundation. “We are trying to get away from invasive technologies, such as deep brain stimulation and prescription medications, and instead start up a repair process by using the brain’s synaptic plasticity.”

Cognionics also developed the Quick-20, a headset that can be applied faster and is
easier to use but only offers 20-channels (the clinical standard 10/20 system).

In 10 years, using a brain-machine interface might become as natural as using your smartphone is today, said Tim Mullen, a UC San Diego alumnus, now CEO of Qusp and lead author on the study. Mullen, a former researcher at the Swartz Center for Computational Neuroscience at UC San Diego, led the team that developed the software used in the study with partial funding from the Army Research Lab.

read entire press  release >>