January 21, 2016

Switchable material could enable new memory chips


This diagram shows how an electrical voltage can be used to modify the oxygen concentration,
and therefore the phase and structure, of strontium cobaltites. Pumping oxygen in and out
transforms the material from the brownmillerite form (left) to the perovskite form (right).
Courtesy of the researchers

(January 21, 2016)  Small voltage can flip thin film between two crystal states — one metallic, one semiconducting.

Two MIT researchers have developed a thin-film material whose phase and electrical properties can be switched between metallic and semiconducting simply by applying a small voltage. The material then stays in its new configuration until switched back by another voltage. The discovery could pave the way for a new kind of “nonvolatile” computer memory chip that retains information when the power is switched off, and for energy conversion and catalytic applications.

The findings, reported in the journal Nano Letters in a paper by MIT materials science graduate student Qiyang Lu and associate professor Bilge Yildiz, involve a thin-film material called a strontium cobaltite, or SrCoOx.

Usually, Yildiz says, the structural phase of a material is controlled by its composition, temperature, and pressure. “Here for the first time,” she says, “we demonstrate that electrical bias can induce a phase transition in the material. And in fact we achieved this by changing the oxygen content in SrCoOx.”

“It has two different structures that depend on how many oxygen atoms per unit cell it contains, and these two structures have quite different properties,” Lu explains.

One of these configurations of the molecular structure is called perovskite, and the other is called brownmillerite. When more oxygen is present, it forms the tightly-enclosed, cage-like crystal structure of perovskite, whereas a lower concentration of oxygen produces the more open structure of brownmillerite.

read entire press  release >>