April 29, 2015

Wood-derived foam materials

(April 29, 2015)  Since most foam materials are made of petrochemical plastics, they aren’t very climate-friendly. But now an alternative is in sight – a novel foam material produced entirely from wood, which is not harmful to the environment and is also recyclable. In the long term, wood foam could replace conventional products used for thermal insulation, packaging and lightweight construction.

read entire press  release

Artificial photosynthesis could help make fuels, plastics and medicine

(April 25, 2015)  The global industrial sector accounts for more than half of the total energy used every year. Now scientists are inventing a new artificial photosynthetic system that could one day reduce industry’s dependence on fossil fuel-derived energy by powering part of the sector with solar energy and bacteria. In the ACS journal Nano Letters, they describe a novel system that converts light and carbon dioxide into building blocks for plastics, pharmaceuticals and fuels — all without electricity.

journal reference >>

The Trillion-Frame-Per-Second Camera

Credit: Keiichi Nakagawa, University of Tokyo

Splitting a single light pulse into a fast barrage of rainbow-colored daughter pulses allows scientists to capture movies of complex, ultrafast physical and biological processes

(April 29, 2015)  When a crystal lattice is excited by a laser pulse, waves of jostling atoms can travel through the material at close to one sixth the speed of light, or approximately 28,000 miles/second. Scientists now have a new tool to take movies of such superfast movement in a single shot.

read the research news (UTokyo) >>

Researchers closer to being able to change blood types

(April 29, 2015)  What do you do when a patient needs a blood transfusion but you don’t have their blood type in the blood bank? It’s a problem that scientists have been trying to solve for years but haven’t been able to find an economic solution – until now.

University of British Columbia chemists and scientists in the Centre for Blood Research have created an enzyme that could potentially solve this problem. The enzyme works by snipping off the sugars, also known as antigens, found in Type A and Type B blood, making it more like Type O. Type O blood is known as the universal donor and can be given to patients of all blood types.

read entire press  release

April 28, 2015


Nanotechnologists develop a method for incorporating living cells into materials

(April 28, 2015)  Scientists from the University of Twente's MESA+ research institute have developed a method for naturally incorporating living cells in materials, while fully preserving all properties. They succeeded in changing bacteria in such a way that they can be incorporated in man-made materials with dynamic weak bonds (non-covalent bonds). This new method opens the way for 'living implants', such as stents on which cells from the lining of blood vessels can attach themselves. The research was published in the leading scientific journal ACS Nano.

read entire press  release

New material for creating artificial blood vessels

(April 25, 2015)  TU Wien and MedUni Vienna have developed artificial blood vessels, which are broken down by the body and replaced with its own tissue.

Blocked blood vessels can quickly become dangerous. It is often necessary to replace a blood vessel – either by another vessel taken from the body or even by artificial vascular prostheses. Together, Vienna University of Technology and Vienna Medical University have developed artificial blood vessels made from a special elastomer material, which has excellent mechanical properties. Over time, these artificial blood vessels are replaced by endogenous material. At the end of this restorative process, a natural, fully functional vessel is once again in place. The method has already been used successfully in rats.

read entire press  release

Quantum particles at play: Game theory elucidates the collective behavior of bosons

(April 28, 2015)  Quantum particles behave in strange ways and are often difficult to study experimentally. Using mathematical methods drawn from game theory, LMU physicists have shown how bosons, which like to enter the same state, can form multiple groups.

When scientists explore the mysterious behavior of quantum particles, they soon reach the limits of present-day experimental research. From there on, progress is only possible with the aid of theoretical ideas. NIM investigator Prof. Erwin Frey and his team at the Dept. of Statistical and Biological Physics (LMU Munich) have followed this route to study the behavior of bosons. Bosons are quantum particles that like to cluster together. But by applying methods from the mathematical field of game theory, the Munich physicists were able to explain why and under what conditions bosons form multiple groups.

read entire press  release

April 27, 2015

Is the Universe a Hologram?

(April 27, 2015)  Describing the universe requires fewer dimensions than we might think. New calculations show that this may not just be a mathematical trick, but a fundamental feature of space itself.

At first glance, there is not the slightest doubt: to us, the universe looks three dimensional. But one of the most fruitful theories of theoretical physics in the last two decades is challenging this assumption. The "holographic principle” asserts that a mathematical description of the universe actually requires one fewer dimension than it seems. What we perceive as three dimensional may just be the image of two dimensional processes on a huge cosmic horizon.

read entire press  release

April 25, 2015

Ames Laboratory scientists create cheaper magnetic material for cars, wind turbines

(April 25, 2015) Karl A. Gschneidner and fellow scientists at the U.S. Department of Energy’s Ames Laboratory have created a new magnetic alloy that is an alternative to traditional rare-earth permanent magnets.

The new alloy—a potential replacement for high-performance permanent magnets found in automobile engines and wind turbines--eliminates the use of one of the scarcest and costliest rare earth elements, dysprosium, and instead uses cerium, the most abundant rare earth

read entire press  release

April 24, 2015


Four-dimensional printing is unfolding as technology that takes 3D printing to an entirely new level.

(April 24, 2015)  The fourth dimension is time, shape shifting in fact, and the ARC Centre of Excellence for Electromaterials Science (ACES) at the University of Wollongong (UOW) is helping to set the pace in the next revolution in additive manufacturing.

Just as the extraordinary capabilities of 3D printing have begun to infiltrate industry and the family home, researchers have started to develop 3D printed materials that morph into new structures, post production, under the influence of external stimuli such as water or heat - hence the name, 4D printing.

read entire press  release

April 23, 2015

ORNL reports method that takes quantum sensing to new level

(April 23, 2015)  Thermal imaging, microscopy and ultra-trace sensing could take a quantum leap with a technique developed by researchers at the Department of Energy’s Oak Ridge National Laboratory.

“Quite simply, under certain circumstances, our method enables us to see things we couldn’t see before,” said Raphael Pooser, co-author of a paper published in the journal Optica. He and Benjamin Lawrie used quantum correlated beams of light to overcome the fundamental detection limit of microcantilever-based sensors caused by intensity fluctuations.

read entire press  release

April 22, 2015

Consumers one day may snap photos with smartphones to see if an item is real

(April 22, 2015)  Real or counterfeit? Northwestern University scientists have invented sophisticated fluorescent inks that one day could be used as multicolored barcodes for consumers to authenticate products that are often counterfeited. Snap a photo with your smartphone, and it will tell you if the item is real and worth your money.

Counterfeiting is very big business worldwide, with $650 billion per year lost globally, according to the International Chamber of Commerce. The new fluorescent inks give manufacturers and consumers an authentication tool that would be very difficult for counterfeiters to mimic.

read entire press  release

Low-reflection Wings Make Butterflies Nearly Invisible

(April 22, 2015)  The effect is known from the smart phone: Sun is reflected by the display and hardly anything can be seen. In contrast to this, the glasswing butterfly hardly reflects any light in spite of its transparent wings. As a result, it is difficult for predatory birds to track the butterfly during the flight. Researchers of KIT under the direction of Hendrik Hölscher found that irregular nanostructures on the surface of the butterfly wing cause the low reflection. In theoretical experiments, they succeeded in reproducing the effect that opens up fascinating application options, e.g. for displays of mobile phones or laptops.

read entire press  release

Putting a New Spin on Computing Memory

(April 22, 2015)  Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data. Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting from the beginning, and dropping the device could wipe out the memory altogether. As computers continue to shrink—moving from desks and laps to hands and wrists—memory has to become smaller, stable and more energy conscious. A group of researchers from Drexel University’s College of Engineering is trying to do just that with help from a new class of materials, whose magnetism can essentially be controlled by the flick of a switch.

read entire press  release

3D-printed aerogels improve energy storage

(April 22, 2015)  A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations.

Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications.

read entire press  release

April 21, 2015

Electrons Move Like Light in Three-Dimensional Solid

Tracking electronic motion in a graphene-like bulk material shows fast electrons in all dimensions.

(April 21, 2015)  Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional materials, such as graphene, but is now realized in a three-dimensional bulk material. High-resolution angle-resolved electron spectroscopy, stimulated by synchrotron x-ray radiation, was used to substantiate the theoretically predicted exotic electron structure.

read entire press  release

Engineered softwood could transform pulp, paper and biofuel industries

(April 21, 2015)  Scientists have demonstrated the potential for softwoods to process more easily into pulp and paper if engineered to incorporate a key feature of hardwoods. The finding, published in this week's Proceedings of the National Academy of Sciences, could improve the economics of the pulp, paper and biofuels industries and reduce those industries' environmental impact.

read entire press  release

Whiteboards of the future: New electronic paper could make inexpensive electronic displays

(April 21, 2015)  In this work, we describe the synthesis of novel electrically and magnetically dual-driven Janus particles for a handwriting-enabled twisting ball display via the microfluidic technique. One hemisphere of the Janus particles contains a charge control agent, which allows the display color to be controlled by applying a voltage and superparamagnetic nanoparticles, allows handwriting by applying a magnetic field to the display. We fabricated a twisting ball display utilizing these Janus particles and tested the electric color control and handwriting using a magnet. As a result, the display was capable of permitting handwriting with a small magnet in addition to conventional color control using an applied voltage (80 V). Handwriting performance was improved by increasing the concentration of superparamagnetic nanoparticles and was determined to be possible even when 80 V was applied across the electrodes for 4 wt. % superparamagnetic nanoparticles in one hemisphere.

journal reference (Open Access) >>

Cost-efficiency of plug-in hybrids calculated a thousand times faster

(April 21, 2015)  Plug-in hybrids have low fuel consumption, but require more costly parts than cars with a regular combustion engine. During development, the optimal cost balance must be calculated, which has been extremely time consuming to date. Now researchers at Chalmers University of Technology have developed a new method that dramatically reduces the time needed for these calculations.

Plug-in hybrids are more fuel efficient thanks to the combination of electric motor and battery. However, the higher number of components the higher the manufacturing costs.

read entire press  release

New tabletop detector “sees” single electrons

Magnet-based setup may help detect the elusive mass of neutrinos.

(April 21, 2015)  MIT physicists have developed a new tabletop particle detector that is able to identify single electrons in a radioactive gas.

As the gas decays and gives off electrons, the detector uses a magnet to trap them in a magnetic bottle. A radio antenna then picks up very weak signals emitted by the electrons, which can be used to map the electrons’ precise activity over several milliseconds.

read entire press  release

April 20, 2015

Beyond the Touchscreen: Carnegie Mellon, Disney Researchers Develop Acoustically Driven Controls for Handheld Devices

A Cheap, Accessible Way to Add Tangible Interactivity to Smartphone

As people find ever more inventive uses for smartphones, touchscreens sometimes fall short as control surfaces. Researchers at Carnegie Mellon University and Disney Research have developed an inexpensive alternative — a toolbox of physical knobs, sliders and other mechanisms that can be readily added to any device.

read entire press  release

New tactic targets brain tumors

Rice University study suggests new drug strategy for insulin-influenced tumor growth

(April 20, 2015) Drugs that target insulin pathways to slow or stop the growth of brain tumors are going in the right direction but appear to be on the wrong track, according to new research at Rice University.

read entire press  release

Happily ever after: Scientists arrange protein-nanoparticle marriage

New biotech method could lead to development of HIV vaccine, targeted cancer treatment

(April 20, 2015)  Fastening protein-based medical treatments to nanoparticles isn’t easy.

With arduous chemistry, scientists can do it. But like a doomed marriage, the fragile binding that holds them together often separates.
read entire press  release

OSU innovation boosts Wi-Fi bandwidth tenfold

(April 20, 2015)  Researchers at Oregon State University have invented a new technology that can increase the bandwidth of WiFi systems by 10 times, using LED lights to transmit information.

The technology could be integrated with existing WiFi systems to reduce bandwidth problems in crowded locations, such as airport terminals or coffee shops, and in homes where several people have multiple WiFi devices.

Experts say that recent advances in LED technology have made it possible to modulate the LED light more rapidly, opening the possibility of using light for wireless transmission in a “free space” optical communication system.

read entire press  release

April 18, 2015

Engineer improves rechargeable batteries with MoS2 nano 'sandwich'

(April 18, 2015)  The key to better cellphones and other rechargeable electronics may be in tiny "sandwiches" made of nanosheets, according to mechanical engineering research from Kansas State University.

Gurpreet Singh, assistant professor of mechanical and nuclear engineering, and his research team are improving rechargeable lithium-ion batteries. The team has focused on the lithium cycling of molybdenum disulfide, or MoS2, sheets, which Singh describes as a "sandwich" of one molybdenum atom between two sulfur atoms.

read entire press  release

Beyond the lithium ion – a significant step toward a better performing battery

(April 18, 2015)  The race is on around the world as scientists strive to develop a new generation of batteries that can perform beyond the limits of the current lithium-ion based battery.

Researchers at the University of Illinois at Chicago have taken a significant step toward the development of a battery that could outperform the lithium-ion technology used in electric cars such as the Chevy Volt.

read entire press  release

New paper opens the door to the study of a new class of materials

(April 18, 2015)  A new paper by a team of researchers led by Karel Matous, College of Engineering Associate Professor of Computational Mechanics in the Department of Aerospace and Mechanical Engineering at the University of Notre Dame, describes how an accurate statistical description of heterogeneous particulate materials, which is used within statistical micromechanics theories, governs the overall thermo-mechanical properties. This detailed statistical description was computed using a novel adaptive interpolation/integration scheme on the nation’s largest parallel supercomputers. Quantifying the morphology of many-body systems has applications in many scientific fields at a variety of length scales from molecular configurations up to structural composites and celestial bodies.

journal reference >>

April 16, 2015

Scientists use brain stimulation to boost creativity, set stage to potentially treat depression

(April 16, 2015)  Using a weak electric current to alter a specific brain activity pattern, UNC School of Medicine researchers increased creativity in healthy adults. Now they’re testing the same experimental protocol to alleviate symptoms in people with depression.

A UNC School of Medicine study has provided the first direct evidence that a low dose of electric current can enhance a specific brain pattern to boost creativity by an average of 7.4 percent in healthy adults, according to a common, well-validated test of creativity.

journal reference >>

Nanotubes with 2 walls have singular qualities

Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes

(April 16, 2015)  Rice University researchers have determined that two walls are better than one when turning carbon nanotubes into materials like strong, conductive fibers or transistors.

Rice materials scientist Enrique Barrera and his colleagues used atomic-level models of double-walled nanotubes to see how they might be tuned for applications that require particular properties. They knew from others’ work that double-walled nanotubes are stronger and stiffer than their single-walled cousins. But they found it may someday be possible to tune double-walled tubes for specific electronic properties by controlling their configuration, chiral angles and the distance between the walls.

read entire press  release

Major Advance in Artificial Photosynthesis Poses Win/Win for the Environment

Berkeley Lab Researchers Perform Solar-powered Green Chemistry with Captured CO2

(April 16, 2015)  A potentially game-changing breakthrough in artificial photosynthesis has been achieved with the development of a system that can capture carbon dioxide emissions before they are vented into the atmosphere and then, powered by solar energy, convert that carbon dioxide into valuable chemical products, including biodegradable plastics, pharmaceutical drugs and even liquid fuels.

read entire press  release

April 15, 2015

Tutoring for Nature: Production of Valuable Nootkatone with Yeast

New method allows production of expensive grapefruit aroma Nootkatone biotechnologically from cheap sugar using a “turbo-yeast”. The versatile, healthy and tasty substance is used in soft drinks, pharmaceutical products or even as an insect repellent.

read entire press  release

Quantum cryptography at the speed of light: Researchers design first all-photonic repeaters

Imagine having your MRI results sent directly to your phone, with no concern over the security of your private health data. Or knowing your financial information was safe on a server halfway around the world. Or sending highly sensitive business correspondence, without worrying that it would fall into the wrong hands.

read entire press  release

Scientists develop mesh that captures oil—but lets water through

Nano-coated mesh could clean oil spills for less than $1 per square foot

The unassuming piece of stainless steel mesh in a lab at The Ohio State University doesn’t look like a very big deal, but it could make a big difference for future environmental cleanups.

Water passes through the mesh but oil doesn’t, thanks to a nearly invisible oil-repelling coating on its surface.

In tests, researchers mixed water with oil and poured the mixture onto the mesh. The water filtered through the mesh to land in a beaker below. The oil collected on top of the mesh, and rolled off easily into a separate beaker when the mesh was tilted.

read entire press  release

Shape-shifting molecule tricks viruses into mutating themselves to death

A newly developed spectroscopy method is helping to clarify the poorly understood molecular process by which an anti-HIV drug induces lethal mutations in the virus’ genetic material. The findings from the University of Chicago and the Massachusetts Institute of Technology could bolster efforts to develop the next generation of anti-viral treatments.

read entire press  release

Light in a spin

Light must travel in a straight line and at a constant speed, or so the laws of nature suggest. Now, researchers at the University of the Witwatersrand in Johannesburg have demonstrated that laser light traveling along a helical path through space, can accelerate and decelerate as it spins into the distance.

This is the first time that angular acceleration has been observed with light, and is therefore likely to lead to new applications using these structured light fields.

read entire press  release

Cobalt film a clean-fuel find

Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water

(April 15, 2015)  A cobalt-based thin film serves double duty as a new catalyst that produces both hydrogen and oxygen from water to feed fuel cells, according to scientists at Rice University.

The inexpensive, highly porous material invented by the Rice lab of chemist James Tour may have advantages as a catalyst for the production of hydrogen via water electrolysis. A single film far thinner than a hair can be used as both the anode and cathode in an electrolysis device.

read entire press  release

April 14, 2015

'Para-shooting' boron on benzene rings

(April 14, 2015)  Tuning the para position of benzene moieties is significant for creating biologically active compounds and optoelectronic materials. Yet, attaching a functional handle specifically at the para position of benzene has been challenging due to multiple reactive sites on the ring. Yutaro Saito, Yasutomo Segawa and Professor Kenichiro Itami at ITbM, Nagoya University have developed a novel iridium catalyst that enables highly para-selective borylation on benzene, leading to the rapid synthesis of drug derivatives for treating Parkinson's disease..

read entire press  release

Ultrafast photodetectors with graphene

(April 14, 2015)  Scientists affiliated with Europe’s Graphene Flagship develop a photodetector that converts incident light into electrical signals on femtosecond timescales, enabling ultrafast operation speeds for electronic circuits in optical communications and various other applications.

The conversion of light into electricity underpins a range of technologies that includes solar cells, digital cameras and optical-fibre communications, and in most cases operation speed is critical. For example, lasers currently used in optical communications, medical imaging and surgery can generate light pulses a picosecond (10-12 s) and less in length.

read entire press  release

Can a robot clean a hospital room just as well as a person?

(April 14, 2015)  According to Chetan Jinadatha, M.D., M.P.H., assistant professor at the Texas A&M Health Science Center College of Medicine and chief of infectious diseases at the Central Texas Veterans Health Care System in Temple, that is indeed the case.

While it may sound more like science fiction than real life, Jinadatha’s research that looks at the effectiveness of a germ-zapping robot to help clean hospital rooms could hold the key to preventing the spread of “superbugs” – in turn, saving countless dollars and, most importantly, lives.
read entire press  release

Graphene speeds up light-to-electricity conversion

Highly efficient carrier heating after light absorption leads to ultrafast (<50 fs) photovoltage creation

(April 14, 2015)  The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells. It also forms an essential step in data communication applications, since it allows for information carried by light to be converted into electrical information that can be processed in electrical circuits. Graphene is an excellent material for ultrafast conversion of light to electrical signals, but so far it was not known how fast graphene responds to ultrashort flashes of light.

read entire press  release

April 13, 2015


Biorefining industries produce fuel, power, heat, and various chemicals. The products are made from biomass, such as food waste and forest-based materials. Today the forest-based biorefining industries face huge challenges. The cell walls of wood biomass are very hard to break down and large quantities of enzymes are required in the industrial process.  A Norwegian based research project now aims to develop low cost production of industrial enzymes using tobacco plants as a “green factory”. Such enzymes may be used in the production of second generation biofuels, and to produce biochemicals that can replace various oil-based products. Second generation biofuels are made from non-food biomass.

read entire article 


A reservoir of abiotic methane has been discovered in the Arctic Ocean. This means that there is more of the greenhouse gas trapped under the seabed than previously thought.

Methane, a highly effective greenhouse gas, is usually produced by decomposition of organic material, a complex process involving bacteria and microbes.

But there is another type of methane that can appear under specific circumstances: Abiotic methane is formed by chemical reactions in the oceanic crust beneath the seafloor.

read entire press  release

New study challenges conventional wisdom that sight-based brain sensory network organization is impaired with blindness

Is visual input essential to how the topographical map of the visual cortex develops in the human brain?

In new research published today, scientists at the Hebrew University of Jerusalem and in Germany and the USA show that the way in which the brain organizes its visual sense remains intact even in people who are blind from birth, and that at least the pattern of functional connectivity between the visual area and the topographical representation of space (up/down, left/right, etc.) can develop on its own without any actual visual experience.

read entire press  release

Shape changing display could spell the end for the 2D graph

Imagine your computer screen could change shape. Imagine if that screen could spring to life at the touch of a fingertip, translating numbers and trends into shapes and gradients you can reach out and touch.
Researchers have developed a 3D prototype display which brings data to life in just this way sounding the death knell for the two dimensional bar chart.

read entire press  release

Solution-grown nanowires make the best lasers

Take a material that is a focus of interest in the quest for advanced solar cells. Discover a "freshman chemistry level" technique for growing that material into high-efficiency, ultra-small lasers. The result, disclosed today (Monday, April 13) in Nature Materials, is a shortcut to lasers that are extremely efficient and able to create many colors of light.

That makes these tiny lasers suitable for miniature optoelectronics, computers and sensors.

see also

A Hyper-Stretchable Elastic-Composite Energy Harvester

Stretchable electronics that offer elastic characteristics in response to large strain deformation have attracted significant interest for use in a number of new applications, such as artificial electronic skins (e-skins), epidermal/biomedical devices, biomimetic lenses, and body sensor networks (BSNs). Although diverse approaches have been attempted to develop practical stretchable/wearable electronics and batteries, a challenging problem is in power supplies, which should have similar elastic properties to achieve their co-integration with stretchable devices.

read entire article (PDF) >>

New Light for Old Master Paintings

Researchers develop high-resolution technique based on Optical Coherence Tomography for non-invasively imaging and analyzing the hidden layers in centuries-old priceless paintings

A painting hanging on the wall in an art gallery tells one story. What lies beneath its surface may tell quite another.

Often in a Rembrandt, a Vermeer, a Leonardo, a Van Eyck, or any other great masterpiece of western art, the layers of paint are covered with varnish, sometimes several coats applied at different times over their history.  The varnish was originally applied to protect the paint underneath and make the colors appear more vivid, but over the centuries it can degrade. Conservators carefully clean off the old varnish and replace it with new, but to do this safely it is useful to understand the materials and structure of the painting beneath the surface. Conservation scientists can glean this information by analyzing the hidden layers of paint and varnish.

read entire press  release

VTT printed a morphine test on paper

VTT is the first in the world to have developed a drug test printed on paper. VTT used antibodies – produced by methods of molecular biology – as morphine sensing molecules when creating this printing technology-based morphine test. Using printing technology to manufacture rapid tests enables high production volumes and low production costs.

journal reference >>

Passenger focused air conditioning

(April 13, 2015)  How can a pleasant vehicle climate be achieved efficiently? Researchers at the Technische Universität München (TUM) pursued this question in the context of the research program Visio.M funded by the German Federal Ministry for Education and Research (BMBF) with a total of 7.1 million euro. The results of their research show that the potential of energy efficient air conditioning is all but exhausted. And this applies equally to gasoline powered cars.

read entire press  release

April 10, 2015

Bacteria Tracked Feeding Nitrogen to Nutrient-Starved Plants

Scientists measured accelerated growth in plants colonized by bacteria that pull nitrogen from the air and release it into soil

With rising populations and changing climate conditions, the need for resilient and reliable crops has never been greater. Nitrogen—an essential element for plant growth—is often woefully absent in heavily farmed land. Earth’s atmosphere offers an overabundance of nitrogen, but how can it be safely and sustainably transferred into the soil? Nitrogen-eating bacteria may be the answer.

read entire press  release