July 2, 2012

Buck Scientists Correct Huntington's Disease Mutation in Induced Pluripotent Stem Cells




Buck Scientists Correct Huntington's Disease Mutation in Induced Pluripotent Stem Cells

June 25, 2012 Novato, California Researchers at the Buck Institute have corrected the genetic mutation responsible for Huntington’s disease (HD) using a human induced pluripotent stem cell (iPSC) that came from a patient suffering from the incurable, inherited  neurodegenerative disorder. Scientists took the diseased iPSCs, made the genetic correction, generated neural stem cells and then transplanted the mutation-free cells into a mouse model of HD where they are generating normal neurons in the area of the brain affected by HD. Results of the research are published in the June 28, 2012 online edition of the journal Cell Stem Cell.

iPSCs are reverse-engineered from human cells such as skin, back to a state where they can be coaxed into becoming any type of cell.  They can be used to model numerous human diseases and may also serve as sources of transplantable cells that can be used in novel cell therapies. In the latter case, the patient provides a sample of his or her own skin to the laboratory. “We believe the ability to make patient-specific, genetically corrected iPSCs from HD patients is a critical step for the eventual use of these cells in cell replacement therapy,” said Buck faculty Lisa Ellerby, PhD, lead author of the study. “The genetic correction reversed the signs of disease in these cells – the neural stem cells were no longer susceptible to cell death and the function of their mitochondria was normal.” Ellerby said the corrected cells could populate the area of the mouse brain affected in HD, therefore, the next stage of research involves transplantation of corrected cells to see if the HD-afflicted mice show improved function. Ellerby said these studies are important as now we can deliver patient-specific cells for cell therapy, that no longer have the disease causing mutation.

read more: