June 5, 2013

Berkeley Lab Researchers Increase NMR/MRI Sensitivity through Hyperpolarization of Nuclei in Diamond



Today’s nuclear magnetic resonance (NMR) and Magnetic Resonance Imaging (MRI) technologies, like quantum information processing and nuclear spintronic technologies, are based on an intrinsic quantum property of electrons and atomic nuclei called “spin.” Electrons and nuclei can act like tiny bar magnets with a spin that is assigned a directional state of either “up” or “down.” NMR/MRI signals depend upon a majority of nuclear spins being polarized to point in one direction. The greater the polarization, the stronger the signal. Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have reported on a technique for hyperpolarizing carbon-13 nuclear spins in diamond that enhances the sensitivity of NMR/MRI by many orders of magnitude above what is ordinarily possible with conventional NMR magnets at room temperature.