June 17, 2013

Polymer-coated catalyst protects "artificial leaf"



Due to the fluctuating availability of solar energy, storage solutions are urgently needed. One option is to use the electrical energy generated inside solar cells to split water by means of electrolysis, in the process yielding hydrogen that can be used for a storable fuel. Researchers at the HZB Institute for Solar Fuels have modified so called superstrate solar cells with their highly efficient architecture in order to obtain hydrogen from water with the help of suitable catalysts. This type of cell works something like an "artificial leaf." But the solar cell rapidly corrodes when placed in the aqueous electrolyte solution. Now, Ph.D. student Diana Stellmach has found a way to prevent corrosion by embedding the catalysts in an electrically conducting polymer and then mounting them onto the solar cell's two contact surfaces, making her the first scientist in all of Europe to have come up with this solution. As a result, the cell's sensitive contacts are sealed to prevent corrosion with a stable yield of approx. 3.7 percent sunlight.