April 4, 2013

ORNL microscopy uncovers "dancing" silicon atoms in graphene





Jumping silicon atoms are the stars of an atomic scale ballet featured in a new Nature Communications study from the Department of Energy's Oak Ridge National Laboratory.

The ORNL research team documented the atoms' unique behavior by first trapping groups of silicon atoms, known as clusters, in a single-atom-thick sheet of carbon called graphene. The silicon clusters, composed of six atoms, were pinned in place by pores in the graphene sheet, allowing the team to directly image the material with a scanning transmission electron microscope.

The "dancing" movement of the silicon atoms, seen in a video here: http://www.ornl.gov/ornlhome/video/video_files/dancing-silicons-1.mov, was caused by the energy transferred to the material from the electron beam of the team's microscope.