April 3, 2013

Quantum cryptography: On wings of light




LMU physicists have, for the first time, successfully transmitted a secure quantum code through the atmosphere from an aircraft to a ground station.

Can worldwide communication ever be fully secure? Quantum physicists believe they can provide secret keys using quantum cryptography via satellite. Unlike communication based on classical bits, quantum cryptography employs the quantum states of single light quanta (photons) for the exchange of data. Heisenberg’s uncertainty principle limits the precision with which the position and momentum of a quantum particle can be determined simultaneously, but can also be exploited for secure information transfer. Like its classical counterpart, quantum cryptography requires a shared key with which the parties encode and decode messages. However, quantum mechanical phenomena guarantee the security of quantum key distribution. Because quantum states are fragile, interception of the key by an eavesdropper will alter the behavior properties of the particles, and thus becomes detectable.