January 9, 2013

Bottom-up approach provides first characterization of pyroelectric nanomaterials




By taking a “bottom-up” approach, researchers at the University of Illinois at Urbana-Champaign have observed for the first time that “size does matter,” in regards “pyroelectricity”—the current/voltage developed in response to temperature fluctuations that enables technologies such as infrared sensors, night-vision, and energy conversion units, to name a few.

“Controlling and manipulating heat for applications such as waste heat energy harvesting, integrated cooling technologies, electron emission, and related functions is an exciting field of study today,” explained Lane Martin, an assistant professor of materials science and engineering (MatSE) at Illinois. “Traditionally, these systems have relied on bulk materials, but future nanoscale devices will increasingly require ferroelectric thin films.