June 2, 2015

Researchers simulate behavior of ‘active matter’




Microspheres in a fluid, spinning in opposite directions, create flow patterns that affect other particles. Computer simulations show the particles self-assembling into different structures at different concentrations: bands, small swirls, a single large vortex.

(June 2, 2015)  From flocks of starlings to schools of fish, nature is full of intricate dynamics that emerge from the collective behavior of individuals. In recent years, interest has grown in trying to capture similar dynamics to make self-assembling materials from so-called “active matter.”

Brown University researchers Kyongmin Yeo, Enkeleida Lushi, and Petia Vlahovska have shed new light on a particular class of active matter called active colloids — collections of tiny moving particles suspended in fluid. Using numerical models and computer simulations, the researchers show how spinning particles, pushed about by the fluid flows created as each particle spins, can arrange themselves into an array of emergent macro-scale patterns.


journal reference >>