July 1, 2015

Bio-inspired catalyst paves the way to 'gas-to-liquid'-technologies

Effective conversion of methane oxidation by a new copper zeolite

(July 1, 2015)  A new bio-inspired zeolite catalyst, developed by an international team with researchers from Technische Universität München (TUM), Eindhoven University of Technology and University of Amsterdam, might pave the way to small scale 'gas-to-liquid' technologies converting natural gas to fuels and starting materials for the chemical industry. Investigating the mechanism of the selective oxidation of methane to methanol they identified a copper-oxo-cluster as the active center inside the zeolite micropores.

In an era of depleting mineral oil resources natural gas is becoming ever more relevant, even though the gas is difficult to transport and not easily integrated in the existing industrial infrastructure. One of the solutions for this is to apply 'gas-to-liquid' technologies. These convert methane, the principal component of natural gas, to so-called synthesis gas from which subsequently methanol and hydrocarbons are produced. These liquids are then shipped to chemical plants or fuel companies all over the world.

This approach, however, today is only feasible at very large scales. Currently there is no 'gas-to-liquid' chemistry available for the economical processing of methane from smaller sources at remote locations. This has spawned many research efforts regarding the chemistry of methane conversion.

read entire press  release