July 13, 2015

Chemotherapeutic Coatings Enhance Tumor-Frying Nanoparticles




(July 13, 2015)  Researchers at Duke University have devised a heat-induced nanoparticle drug delivery system to add firepower to a treatment already in clinical trials

In a move akin to adding chemical weapons to a firebomb, researchers at Duke University have devised a method for making a promising nanoscale cancer treatment even more deadly to tumors.

The invention allows an extremely thin layer of hydrogels (think contact lenses) to be deposited on the surface of nanoshells -- particles about a hundred nanometers wide designed to absorb infrared light and generate heat. When heated, these special hydrogels lose their water content and release any molecules (such as drugs) trapped within.

By depositing the hydrogels on tumor-torching nanoshells and loading the new coating with chemotherapeutic drugs, a formidable one-two punch is formed.

The technique is described in a paper published in the journal ACS Biomaterials Science & Engineering on July 13, 2015, and was highlighted as an ACS Editor’s Choice.

“The idea is to combine tumor-destroying heat therapy with localized drug delivery, so that you can hopefully have the most effective treatment possible,” said Jennifer West, the Fitzpatrick Family University Professor of Engineering at Duke, who holds appointments in biomedical engineering, mechanical engineering and materials science, cell biology, and chemistry. “And many chemotherapeutic drugs have been shown to be more effective in heated tissue, so there’s a potential synergy between the two approaches.”

read entire press  release >>