July 17, 2015

Insights into Catalytic Converters


 With the help of X-rays, reactions in catalytic converters can be observed
under close-to-reality conditions. (Photo: KIT-ITCP)

X-ray Methods Reveal Interactions of Active Metals with Gas Molecules – Publication in Chemical Communications

(July 17, 2015)  How do catalytic converters work? Scientists of Karlsruhe Institute of Technology (KIT) studied the reactions under close-to-reality conditions: With the help of X-rays, they observed the interactions of the nitrogen monoxide pollutant molecule and of the reduction agent ammonia with iron and copper centers, i.e. transition metal ions in Fe-ZSM-5 and Cu-SSZ-13, where the reaction takes place. Their results can now be used to further improve the exhaust gas aftertreatment. The researchers present their approach in the journal Chemical Communications. (DOI: 10.1039/C5CC01758K)

Modern catalytic converters for the treatment of exhaust gases in vehicles with a combustion engine have largely contributed to reducing of pollutant emissions. By oxidation or reduction, i.e. the donation or acceptance of electrons, the catalysts convert combustion pollutants, such as carbon monoxide, nitrogen oxides and hydrocarbons, into carbon dioxide, water, and nitrogen. Increasingly strict emission regulations call for a further reduction of fuel consumption and for an efficient use of the exhaust gas aftertreatment system. When adding the reduction agent ammonia formed by e.g. decomposition of urea, nitrogen oxides are converted into harmless nitrogen and water vapor over the catalytic converter. For this purpose, typically an urea solution (AdBlue®) is injected into the exhaust gas section upstream of the catalytic converter.

To improve catalytic converters, it is required to precisely understand their function and the individual reaction steps. “Reliable findings relating to the reactions taking place may only be obtained under close-to-reality conditions,” Professor Jan-Dierk Grunwaldt, Holder of the Chair for Chemical Technology and Catalysis of KIT, says. “This means that we have to watch the catalytic converters at work. Synchrotron radiation sources are perfectly suited for this purpose.” Synchrotron radiation is electromagnetic radiation (from infrared to hard X-rays) of several hundreds or even a million electron-volts in energy. Using hard X-rays, the properties of the active metal centers in the catalytic converter and their interactions with the gas molecules can be observed. Two methods may be applied: (i) X-ray absorption spectroscopy (XAS) allows the determination of oxidation state and coordination number, i.e. the number of nearest neighbors of an atom; (ii) X-ray emission spectroscopy (XES) which can be used to distinguish between different molecules adsorbed on the catalytic converter. On this basis, it can be concluded which molecules cause reduction, when competing adsorption takes place, i.e. if several substances compete for adsorption on catalytic converters, and how individual molecules coordinate on the metal atom.

read entire press release >>