July 7, 2015

Ultrafast terahertz spectroscopy enables the measurement of fundamental magnetotransport details




Terahertz spectroscopy provides basis for advanced nanoelectronics

(July 7, 2015)  The forward-looking technology of spintronics now has a new, highly effective investigative instrument: German physicists from Mainz and Berlin have successfully employed ultrafast terahertz spectroscopy to determine the basic properties of spintronics components. "We thus now have direct access to the most fundamental elements of magnetotransport," said Professor Mathias Kläui of the Institute of Physics at Johannes Gutenberg University Mainz (JGU). Spintronics uses not only the charge of electrons for the purpose of information processing but also their spin, or in other words, their magnetic moment. The principles of spintronics are already being employed in hard drive reading heads and sensors, such as those used by the automotive industry, and offer enormous potential with regard to the development of non-volatile memory systems.

The basis of many spintronics-related applications is the giant magnetoresistance effect or GMR, which was discovered in the 1980s by Albert Fert and Peter Grünberg, who were awarded the Nobel Prize in Physics in 2007 as a result. The GMR effect works like a kind of magnetic sensor, the resistance of which changes depending on the magnetic orientation of the individual thin films in the composite material. This leads to a certain scattering of electrons, the effect of which becomes apparent as resistance. However, it has not proved possible to date to precisely measure this effect with the experimental methods available. The main problem was the extremely short duration of these effects. The electron scattering events occur on a time scale of less than 100 femtoseconds, a femtosecond being one quadrillionth of a second.

read entire press  release