September 4, 2015

Metallic gels produce tunable light emission


Luminescent materials produced by the MIT team are shown under ultraviolet light,
emitting different colors of light that can be modified by their environmental conditions.
These light-emitting beads were made by materials science and engineering
students Caroline Liu and Rebecca Gallivan. Photo: Tara Fadenrecht

New family of luminescent materials could find broad uses in chemical and biological detectors.

(September 4, 2015)  Researchers at MIT have developed a family of materials that can emit light of precisely controlled colors — even pure white light — and whose output can be tuned to respond to a wide variety of external conditions. The materials could find a variety of uses in detecting chemical and biological compounds, or mechanical and thermal conditions.

The material, a metallic polymer gel made using rare-earth elements, is described in a paper in the Journal of the American Chemical Society by assistant professor of materials science and engineering Niels Holten-Andersen, postdoc Pangkuan Chen, and graduate students Qiaochu Li and Scott Grindy.

The material, a light-emitting lanthanide metallogel, can be chemically tuned to emit light in response to chemical, mechanical, or thermal stimuli — potentially providing a visible output to indicate the presence of a particular substance or condition.

The new material is an example of work with biologically inspired materials, Holten-Andersen explains. “My niche is biomimetics — using nature’s tricks to design bio-inspired polymers,” he says. There are an amazing variety of “really funky” organisms in the oceans, he says, adding: “We’ve barely scratched the surface of trying to understand how they’re put together, from a chemical and mechanical standpoint.”

Luminescent materials produced by the MIT team are shown under ultraviolet light,
emitting different colors of light that can be modified by their environmental conditions.
These light-emitting beads were made by materials science and engineering
students Caroline Liu and Rebecca Gallivan. Photo: Tara Fadenrecht

Studying such natural materials, evolved over millions of years to adapt to challenging environmental conditions, “allows us as engineers to derive design principles” that can be applied to other kinds of materials, he adds.

Holten-Andersen’s own research has examined a particular kind of crosslinking in the threads mussels use to anchor themselves to rocks, called metal-coordination bonds. These bonds, he adds, also play an important role in many biological functions, such as binding oxygen to hemoglobin in red blood cells.

He emphasizes that the idea is not to copy nature, but to understand and apply some of the underlying principles of natural materials; in some cases, these principles can be applied in materials that are simpler in structure and easier to produce than their natural counterparts.

read entire press  release >>