September 24, 2015

Protein Conjugation Method Offers New Possibilities for Biomaterials



Research team demonstrates how changing protein decoration points impact behavior

(September 24, 2015)  Biological systems are at the source of many products designed to improve our lives. Recombinant DNA, for example, which retools molecules from multiple genetic sources for new purposes, has spurred the rise of life-changing therapeutics like unique blood-clotting proteins and synthetic insulin.

“Novel functional biomaterials make possible transformative new opportunities to impact society in a beneficial way,” said Michael Jewett, associate professor of chemical and biological engineering at Northwestern University’s McCormick School of Engineering. “Using the same types of machines used in cells to produce insulin proteins, my lab is exploring if we can create new types of protein polymers that might have utility in other applications and materials.”

Jewett’s group, along with the laboratory of Rachel O’Reilly, professor of chemistry at the University of Warwick in the United Kingdom, have taken an important step toward that goal by demonstrating a novel method in which certain kind of polymers can display new and unique functionalities.

The research is published on the cover in the September issue of Bioconjugate Chemistry. Jian Li and Arnaz Ranji, postdoctoral associates in Jewett’s lab, also contributed to the paper. The work was sponsored by the National Science Foundation Materials World Network program, DARPA, and the David and Lucille Packard Foundation.


journal reference (Open Access) >>