September 3, 2015

Pulses for better posture


The implant uses electrical pulses to stimulate muscles. In the future,
the unit will be implanted in the patient’s groin area. The picture shows
the prototype of the implant. © Fraunhofer IPMS

(September 3, 2015)  In an effort to find a better treatment for spinal curvature in children and young people, the EU’s “StimulAIS” project is focused on electrostimulation of muscles. Fraunhofer scientists worked with partners from industry and research to develop a prototype implant that would do the job.

“Sit up straight!” It’s an instruction almost every child has heard some day – but sometimes being reminded to consider your posture isn’t enough: two out of every hundred children and young people between the ages of 10 and 18 suffer from a curvature of the spine. Known as adolescent scoliosis, this growth disorder causes a lasting deformation of the back. These deformations are clearly visible and sufferers often feel disfigured by them.

In nine out of ten cases, the exact causes of the spinal curvature are unknown – what doctors refer to as idiopathic. Recent research suggests that adolescent idiopathic scoliosis, or AIS for short, is caused by a disease of the central nervous system. “According to this theory, the connection between the nerves and the relevant muscles is impaired, but only on one side of the back. When muscles on the healthy side contract, the muscles on the unhealthy side fail to receive the signal to balance the contraction out. This causes the spinal column to twist and buckle,” explains Dr. Andreas Heinig from the Fraunhofer Institute for Photonic Microsystems IPMS in Dresden. Building on this theory and working with research and industry partners in Spain and France, Heinig’s team has developed a novel approach to treat this form of scoliosis. It makes use of functional electrostimulation, whereby targeted electrical impulses replace the nerve signals that the disease has caused to be either too weak or completely absent. The aim is for the impulses to stimulate the deep muscles along the spinal column so that they build up the necessary counter-contractions to allow symmetrical growth. Within the space of just two years, the interdisciplinary European consortium was able to develop a prototype implant.

read entire press  release >>