The UNSW
Engineering team, part of the Centre for Quantum Computation &
Communication
Technology, that
recently proved it was possible to write a quantum version of computer code in
silicon. Project
leader Andrea Morello (left) and lead authors Stephanie Simmons and
Juan Pablo
Dehollain. Photo: Paul Henderson-Kelly
(November 17, 2015) Australian
engineers have proven – with the highest score ever obtained – that a quantum
version of computer code can be written and manipulated using two quantum bits
in a silicon microchip, removing any doubt silicon can be the foundation for a
powerful quantum computer.
A team of Australian engineers has proven – with the highest
score ever obtained – that a quantum version of computer code can be written
and manipulated using two quantum bits in a silicon microchip. The advance
removes lingering doubts that such operations can be made reliably enough to
allow powerful quantum computers to become a reality.
The result, obtained by a team at UNSW, appears today in the
international journal, Nature Nanotechnology
– that a quantum
version of computer code can be written using two quantum bits
in a silicon
microchip.
The quantum code written at UNSW is built upon a class of
phenomena called quantum entanglement, which allows for seemingly
counterintuitive phenomena such as the measurement of one particle instantly affecting
another – even if they are at opposite ends of the universe.
"We have
succeeded in passing the test, and we have done so with
the highest ‘score’
ever recorded in an experiment.”
“This effect is famous for puzzling some of the deepest
thinkers in the field, including Albert Einstein, who called it ‘spooky action
at a distance’,” said Professor Andrea Morello, of the School of Electrical
Engineering & Telecommunications at UNSW and Program Manager in the Centre
for Quantum Computation & Communication Technology, who led the research.
“Einstein was sceptical about entanglement, because it appears to contradict
the principles of ‘locality’, which means that objects cannot be instantly
influenced from a distance.”
False-colour
electron microscope image of the silicon nanoelectronic device which
contains the
phosphorus atom used for the demonstration of quantum entanglement.
Physicists have since struggled to establish a clear
boundary between our everyday world – which is governed by classical physics –
and this strangeness of the quantum world. For the past 50 years, the best
guide to that boundary has been a theorem called Bell’s Inequality, which
states that no local description of the world can reproduce all of the
predictions of quantum mechanics.