November 2, 2015

Signs of Acid Fog Found on Mars



And Spirit, the Little Rover that Could

(November 2, 2015)  Boulder, CO, USA - While Mars doesn't have much in the way of Earth-like weather, it does evidently share one kind of weird meteorology: acid fog.

Planetary scientist Shoshanna Cole has pieced together a compelling story about how acidic vapors may have eaten at the rocks in a 100-acre area on Husband Hill in the Columbia Hills of Gusev Crater on Mars. She used a variety of data gathered by multiple instruments on the 2003 Mars Exploration Rover Spirit to tease out information from exposures of the ancient bedrock. She will be presenting her work on Monday, Nov. 2, in Baltimore, Maryland, at the annual meeting of the Geological Society of America.

The work focused on the 'Watchtower Class' outcrops on Cumberland Ridge and the Husband Hill summit, said Cole, who is an assistant professor at Ithaca College and began studying the area for her Ph.D. thesis at Cornell University.

"The special thing about Watchtower Class is that it's very widespread and we see it in different locations. As far as we can tell, it's part of the ground there," which means that these rocks record environments that existed on Mars billions of years ago.

By combining data from previous studies of the area on Mars, Cole saw some intriguing patterns emerge. Spirit examined Watchtower Class rocks at a dozen locations spanning about 200 meters along Cumberland Ridge and the Husband Hill summit. The chemical composition of these rocks, as determined by Spirit's Alpha Proton X-ray Spectrometer (APXS), is the same, but the rocks looked different to all of the other instruments.

Across Cumberland Ridge -- which is about 1/3 the size of a football field -- the Mössbauer Spectrometer showed there was a surprisingly wide range in the proportion of oxidized iron to total iron, as if something had reacted with the iron in these rocks to different degrees. This iron oxidation state ranges from 0.43 to 0.94 across a span of only 30 meters. Meanwhile, data from both the Mössbauer Spectrometer and the Miniature Thermal Emission Spectrometer (Mini-TES) showed that the minerals within the rocks changed and lost their structure, becoming less crystalline and more amorphous. And these trends match the size of small bumps, which Cole calls agglomerations, seen in Pancam and Microscopic Imager pictures of the rocks.

read entire press  release >>