February 29, 2016

VTT and Aalto University to develop new technology for optical data transfer for the evolving needs of the information society

(February 29, 2016)  VTT Technical Research Centre of Finland and Aalto University, together with a group of contributing local companies, are starting a new Tekes-funded project on optical switching and transmission technologies to improve the scalability and energy-efficiency of data centres and 5G networks where the volumes of data transfer grow exponentially.

The way we use and share information and entertainment content are changing from local media hardware into distributed content with on-line and mobile access. In entertainment, DVDs and CDs have already been replaced by streaming and on-demand movie services. Data storage and bookkeeping are moving into cloud with on-line mobile access and internet of things will soon connect everyday devices into the local or global network.

Already before the onset of this transition, the volume of data transfer was increasing exponentially and the capacity of the data centres was doubled every 18 months. In 2014 the data centres in EU alone consumed about 120 TWh of energy, roughly equivalent to the full capacity of fourteen 1 GW nuclear reactors. 

With the current data centre networking technologies, addressing the exponential increase in data volume would lead to an enormous magnification of the cost.

The new Tekes-funded project, Optical Information Processing for Energy-Efficient Data Centres (OPEC), focuses on the development of novel optical components and technologies on VTT's proprietary silicon photonics platform, as well as new silicon wafer production and precision assembly concepts. This is done in close collaboration with Nokia, Rockley Photonics and other Finnish technology companies aiming to meet the industrial demands of data centres and 5G networks.

Future challenges are approached by developing graphene and other layered 2D material based active photonic components in collaboration between VTT and Aalto University to achieve performance beyond the theoretical limit of the traditional materials. The project also explores the feasibility of integrated photonics in analog signal transfer and manipulation, such as radio-over-fiber and microwave beam steering in mobile link stations.

The project is supported financially and technologically by Nokia, Rockley Photonics, Okmetic, nLight, Ginolis and Picosun. It is part of Tekes' 5th Gear programme that launched several new projects early 2016 in connection with Business from Digitalization call.

read entire press  release >>