February 29, 2016

Syracuse Chemists Combine Biology, Nanotechnology to Create Alternate Energy Source

A schematic of the nano-biosystem (top) and an electron
microscope image of quantum rods

(February 29, 2016)  New article from Maye Research Group draws on nanoscience, self-assembly

Chemists in Syracuse University’s College of Arts and Sciences have made a transformational advance in an alternate lighting source—one that doesn’t require a battery or a plug.

Associate Professor Mathew Maye and a team of researchers from Syracuse, along with collaborators from Connecticut College, have recently demonstrated high-efficient energy transfer between semiconductor quantum rods and luciferase enzymes. Quantum rods and luciferase enzymes are nanomaterials and biomaterials, respectively. When combined correctly, these materials produce bioluminescence—except, instead of coming from a biomaterial, such as a firefly enzyme, the light eminates from a nanomaterial, and is green, orange, red, or near-infrared in color.

The findings are the subject of a recent article in ACS Nano (American Chemical Society, 2016).

“Think of our system as a design project," Maye says. "Our goal has been to build a nano-biosystem that's versatile enough to teach us a lot, while allowing us to overcome significant challenges in the field and have practical applications. The design involves materials from our chemistry and biology labs, as well as various nanoscience and self-assembly tools. It's a true team effort with multiple collaborations.”

Maye illustrates his point by referencing quantum rods, each of which is four nanometers wide and 50 nanometers long. (A nanometer is 1 billionth of a meter.) “The rods were chemically synthesized with amazing precision,” he says. “To get the best information, we realized that we needed at least two different types of rods, each with three synthetically tuned variations, and up to 10 different assembly conditions.”

Having a wide range of variables has enabled Maye and his team to learn more about the science of nano-biology energy transfer.

journal reference >>