August 15, 2015

BESC creates microbe that bolsters isobutanol production

Beth Papanek, working with nutrients for bacterial growth, and Adam Guss are among
the ORNL authors of a paper published in Metabolic Engineering.

(August 15, 2015)  Another barrier to commercially viable biofuels from sources other than corn has fallen with the engineering of a microbe that improves isobutanol yields by a factor of 10.

The finding of the Department of Energy’s BioEnergy Science Center, published in the journal Metabolic Engineering, builds on results from 2011 in which researchers reported on the first genetically engineered microbe to produce isobutanol directly from cellulose.

Isobutanol is attractive because its energy density and octane values are much closer to gasoline and it is useful not only as a direct replacement for gasoline but also as a chemical feedstock for a variety of products. For example, isobutanol can be chemically upgraded into a hydrocarbon equivalent for jet fuel.

While the earlier work by BESC researchers at DOE’s Oak Ridge National Laboratory and the University of California at Los Angeles was important from a proof-of-principle perspective, this new result represents a significant gain.

“When we reported our initial finding four years ago, we were using Clostridium celluloyticium, which is a less complex organism from a metabolic engineering perspective,” said co-author James Liao of UCLA’s Henry Samueli School of Engineering and Applied Science. “With this paper, we have successfully engineered similar traits in the much higher yielding Clostridium thermocellum, and that has taken us to new levels of consolidated bioprocessing efficiency.”

read entire press  release >>