August 10, 2015

ATOMIC-LEVEL DEFENSE SECRETS REVEALED


Sheng Yang He, Howard Hughes Medical Institute-Gordon and Betty Moore Foundation
Plant Biology Investigator, and an MSU Distinguished Professor in the MSU-Department
of Energy Plant Research Laboratory. Courtesy of MSU

(August 10, 2015)  Just as nations around the globe carefully guard their defense secrets, so do plants.

New research in the current issue of Nature, however, has revealed the molecular secrets of plants’ defense mechanisms at the atomic level. The study, led by Michigan State University and Van Andel Research Institute, focuses on the plant hormone jasmonate and its interaction with three key proteins. The findings could help scientists develop dream crops that are better equipped to fend off pests, diseases and future challenges created by fluctuating climate.

“Our study focused on three plant proteins, MYC, JAZ and MED25, which are key regulators of jasmonate signaling,” said Sheng Yang He, a Howard Hughes Medical Institute-Gordon and Betty Moore Foundation Plant Biology Investigator, and an MSU Distinguished Professor in the MSU-Department of Energy Plant Research Laboratory. “A thorough understanding of how plants grow and defend themselves could lead to the design of a new generation of crops that have increased tolerance to diverse stresses and produce higher yields.”

Jasmonate plays a crucial role in regulating defenses when plants come under attacks from pests or pathogens. However, producing and activating jasmonate to ward off these onslaughts takes significant energy and requires plants to strike a delicate balance between defense and energy conservation. If a plant constantly has its defenses activated, its growth can be severely affected.

Globally, about one-third of food is lost or wasted across the entire production chain, according to the Food and Agriculture Organization of the United Nations. With a growing global population and threats from plant pathogens and pests, understanding how plants defend themselves against these attacks is more important than ever before.

read entire press  release >>