August 4, 2015

New biosensors for managing microbial ‘workers’



Researchers at Harvard’s Wyss Institute have unveiled new biosensors that enable scientists to more effectively control and 'communicate with' engineered bacteria.

(August 4, 2015)  Super productive factories of the future could employ fleets of genetically engineered bacterial cells, such as common E. coli, to produce valuable chemical commodities in an environmentally friendly way. By leveraging their natural metabolic processes, bacteria could be re–programmed to convert readily available sources of natural energy into pharmaceuticals, plastics and fuel products.

"The basic idea is that we want to accelerate evolution to make awesome amounts of valuable chemicals," said Wyss Core Faculty member George Church, Ph.D., who is a pioneer in the converging fields of synthetic biology, metabolic engineering, and genetics. Church is the Robert Winthrop Professor of Genetics at Harvard Medical School and Professor of Health Sciences and Technology at Harvard and MIT.

Critical to this process of metabolically engineering microbes is the use of biosensors. Made of a biological component — such as a fluorescent protein — and a 'detector' that responds to the presence of a specific chemical, biosensors act as the switches and levers that turn programmed functions on and off inside the engineered cells. They also can be used to detect which microbial 'workers' are producing the most voluminous amounts of a desired chemical. In this way, they can be thought of as the medium for two–way communication between humans and cells.

read entire press  release >>