August 8, 2015

New research may enhance display and LED lighting technology


To demonstrate their new technology, researchers fabricated a novel 1mm device
(aka Robot Man) made of yellow photonic-crystal-enhanced QDs. Every region of the
device has thousands of quantum dots, each measuring about six nanometers.

Large-area integration of quantum dots and photonic crystals produce brighter & more efficient light.

(August 8, 2015)  Recently, quantum dots (QDs)—nano-sized semiconductor particles that produce bright, sharp, color light—have moved from the research lab into commercial products like high-end TVs, e-readers, laptops, and even some LED lighting. However, QDs are expensive to make so there’s a push to improve their performance and efficiency, while lowering their fabrication costs.

A team of researchers from the University of Illinois at Urbana-Champaign has recently produced some promising results toward that goal, developing a new method to extract more efficient and polarized light from quantum dots (QDs) over a large-scale area. Their method, which combines QD and photonic crystal technology, could lead to brighter and more efficient mobile phone, tablet, and computer displays, as well as enhanced LED lighting.

With funding from the Dow Chemical Company, the research team--led by Brian Cunningham (ECE), Ralph Nuzzo (chemistry), and Andrew Alleyne (MechSE)--embedded QDs in novel polymer materials that retain strong quantum efficiency. They then used electrohydrodynamic jet (e-jet) printing technology to precisely print the QD-embedded polymers onto photonic crystal structures. This precision eliminates wasted QDs, which are expensive to make.

read entire press release >>