(December 29, 2015) Abstract
We study the plane wave scattering on a planar periodic
array of silver dimers. It is found that an appropriately designed array
provides the sharp turn of TE-polarized incident beam in orthogonal (opposite)
directions through the effects of negative-angle refraction (reflection).
1. Introduction
Manipulation of optical wavefront at nanoscale is one of the
central problem of modern photonics. Recent remarkable progress in this field
is largely due to implementation of the phase gradient meta-surfaces which are the two-dimensional arrays of subwavelength
antennas with spatially varying geometric parameters (shape, size,
orientation). The complex structure of the unit cell of such array introduces a
spatially varying phase response with subwavelength resolution, allowing, for
example, controllable refraction and reflection of the incident light beam in
anomalous directions.
Fig. 3 (a) and
(c): The distribution of Hz-component demonstrates the negative-angle
refraction and
reflection phenomena. Neighbouring dimers are exited in anti-phase.
(b) and (d): The
corresponding distribution of electric field in the gap region.
Excited modes are
the lowest plasmonic modes in dimer, see..
This schematic view of a nanoantenna array (A), at left, is an example of new plasmonic metasurfaces
that are promising for various advances, including a possible "hyperlens" that could make optical
microscopes 10 times more powerful. At right (B) is a "hyperbolic metasurface," a tiny metallic grating
for enhancing "quantum emitters," which could make possible future quantum information systems
far more powerful than today's computers. (Birck Nanotechnology Center, Purdue University)
Specifically, we consider a periodic planar (2d) array with unit cell consisting of a pair of infinitely long metal cylinders. Analysis includes the cases of both longitudinal and transversal orientation of dimers with respect to the direction of system periodicity, see Fig. 1. It is demonstrated that the ultrathin array of longitudinally orientated dimers can refract an incident TE-wave in a negative way, whereas the transversal dimers’ orientation under certain conditions leads to phenomenon of negative reflection. These phenomena are associated with the resonance excitation of strongly localized plasmonic modes in the inter-cylinders gaps. Noteworthy, the efficiency of the anomalous beam redirection is restricted only by ohmic losses in metal and can reach 100% in the idealized limit of dissipation-free dimers. Our results can lead to applications in designing of ultra-compact optical components in photonic circuits.