December 8, 2015

PLANT-INSPIRED POWER PLANTS


Hybrid porous catalysts can be “grown” to capture and convert carbon dioxide to useful fuels,
in analogy to a plant’s ability to turn carbon dioxide into biomass. Computer modeling showed
how to tune catalytic functional groups embedded within a nano-porous solid to facilitate fast
reaction rates for converting carbon dioxide and hydrogen to valuable products. (Design: Jingyun Ye)

(December 8, 2015)  Pitt study outlines framework for developing catalysts that turn excess atmospheric CO2 into new source of liquid fuel.

A team of chemical engineers at the University of Pittsburgh recently identified the two main factors for determining the optimal catalyst for turning atmospheric CO2 into liquid fuel. The results of the study, which appeared in the journal ACS Catalysis, will streamline the search for an inexpensive yet highly effective new catalyst.

Imagine a power plant that takes the excess carbon dioxide (CO2) put in the atmosphere by burning fossil fuels and converts it back into fuel. Now imagine that power plant uses only a little water and the energy in sunlight to operate. The power plant wouldn’t burn fossil fuels and would actually reduce the amount of CO2 in the atmosphere during the manufacturing process. For millions of years, actual plants have been using water, sunlight, and CO2 to create sugars that allow them to grow. Scientists around the globe are now adopting their energy-producing behavior.

“We’re trying to speed up the natural carbon cycle and make it more efficient,” said Karl Johnson, the William Kepler Whiteford Professor in the Department of Chemical & Petroleum Engineering at the University of Pittsburgh and principal investigator of the study. “You don’t have to waste energy on all the extra baggage it takes to grow plants, and the result is a man-made carbon cycle that produces liquid fuel.”

There’s one catch. CO2 is a very stable molecule, and enormous amounts of energy are required to get it to react. One common way to make use of excess CO2 involves removing an oxygen atom and combining the remaining CO with H2 to create methanol. However, during this process parts of the conversion reactor need to heat as high as 1000 degrees Celsius, which can be difficult to sustain, especially when the only energy source is the sun.


journal reference >>