October 27, 2015

Promising technique improves hydrogen production of affordable alternative to platinum

A schematic representation of the edge-terminated MoS2 on glassy carbon electrode

(October 27, 2015)  Scientists have demonstrated that microwaves can help create nanostructured molybdenum disulfide (MoS2) catalysts with an improved ability to produce hydrogen.

The microwave-assisted strategy works by increasing the space, and therefore decreasing the interaction, between individual layers of MoS2 nanosheets. This exposes a larger fraction of reactive sites along the edges of these surfaces where hydrogen can be produced.

Atomistic first-principles calculations show that the increase in spacing between the layers changes the electronic and chemical properties of these edge sites, making them more effective in producing hydrogen. The strategy was demonstrated by a small group of researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility based at DOE’s Argonne National Laboratory.

"The microwave-assisted strategy could be a viable way to design advanced molybdenum disulfide catalysts for hydrogen production and hydrogen fuel cells," said Yugang Sun, a nanoscience scientist in Argonne's Nanoscience and Technology Division. "Microwave-synthesized nanostructured MoS2 exceeds the reactivity and stability levels of unmodified MoS2. Microwave-assisted synthesis is also a greener strategy when compared to conventional heating methods."

read entire press  release >>