October 17, 2015

Study questions dates for cataclysms on early moon, Earth


The deformed lunar zircon at center was brought from the moon by Apollo astronauts.
The fractures characteristic of meteorite impact are not seen in most lunar zircons,
so the ages they record probably reflect heating by molten rock, not impact.
Photo: Apollo 17/Nicholas E. Timms

(October 17, 2015)  Phenomenally durable crystals called zircons are used to date some of the earliest and most dramatic cataclysms of the solar system. One is the super-duty collision that ejected material from Earth to form the moon roughly 50 million years after Earth formed. Another is the late heavy bombardment, a wave of impacts that may have created hellish surface conditions on the young Earth, about 4 billion years ago.

Both events are widely accepted but unproven, so geoscientists are eager for more details and better dates. Many of those dates come from zircons retrieved from the moon during NASA's Apollo voyages in the 1970s.

A study of zircons from a gigantic meteorite impact in South Africa, now online in the journal Geology, casts doubt on the methods used to date lunar impacts. The critical problem, says lead author Aaron Cavosie, a visiting professor of geoscience and member of the NASA Astrobiology Institute at the University of Wisconsin-Madison, is the fact that lunar zircons are "ex situ," meaning removed from the rock in which they formed, which deprives geoscientists of corroborating evidence of impact.

This highly shocked zircon, from the Vredefort Dome in South Africa,
shows thin, red bands that are a hallmark of meteorite impact.
Photo: Aaron Cavosie

"While zircon is one of the best isotopic clocks for dating many geological processes," Cavosie says, "our results show that it is very challenging to use ex situ zircon to date a large impact of known age."

Although many of their zircons show evidence of shock, "once separated from host rocks, ex situ shocked zircons lose critical contextual information," Cavosie says.

The "clock" in a zircon occurs as lead isotopes accumulate during radioactive decay of uranium. With precise measurements of isotopes scientists can calculate, based on the half life of uranium, how long lead has been accumulating.

If all lead was driven off during asteroid impact, the clock was reset, and the amount of accumulated lead should record exactly how long ago the impact occurred.

read entire press  release >>