October 4, 2015

UBC researchers create self-propelled powder to stop bleeding



Image showing a carbonate particle releasing carbon dioxide and propelling
at a high velocity through an aqueous solution. Credit: James Baylis

(October 4, 2015)  UBC researchers have created the first self-propelled particles capable of delivering coagulants against the flow of blood to treat severe bleeding, a potentially huge advancement in trauma care.

“Bleeding is the number one killer of young people, and maternal death from postpartum hemorrhage can be as high as one in 50 births in low resource settings so these are extreme problems,” explains Christian Kastrup, an assistant professor in the Department of Biochemistry and Molecular Biology and the Michael Smith Laboratories at the University of British Columbia.

Traditional methods of halting severe bleeding are not very effective when the blood loss originates inside the body like the uterus, sinus or abdomen.

“People have developed hundreds of agents that can clot blood but the issue is that it’s hard to push these therapies against severe blood flow, especially far enough upstream to reach the leaking vessels. Here, for the first time, we’ve come up with an agent that can do that,” Kastrup said.

Kastrup teamed up with a group of researchers, biochemical engineers and emergency physicians to develop simple, gas-generating calcium carbonate micro-particles that can be applied in powder form to stop critical bleeding.

The particles work by releasing carbon dioxide gas, like antacid tablets, to propel them toward the source of bleeding.

read entire press  release >>